Research Associate  at  NIT Manipur

CFD Research Fellow 2019  at  IIT Bombay  (FOSSEE)

Research Interests:     TwoPhase Flow,  DPM,  LES,  Fluidized Bed,  Heat Transfer

Computing Experience:     OpenFOAM,  Ansys (ICEM & Fluent),  Matlab,  SolidWorks,  NX Cad,  Python,  AutoCad,  C

Contact Info

Email:                  [email protected]

LinkedIn:             https://www.linkedin.com/in/jishnu-handique/

Researchgate:     https://www.researchgate.net/profile/Jishnu_Handique?ev=prf_highl


Projects by Jishnu Handique

  Assembled  Machine  Vice:       Drafting: (1)  Clamping  Plate:     (2)  Handle  Cap:     (3)  Handle:     (4)  Jaw:     (5)  Lock Read more

  (1)  Pipe  Vice:   (2)  Knuckle  Joint:   (3)  Screw  Jack:   (4)  Toy  Train  Model:   (5)  Socket  Spigot  Joint:   (6)  AirCraft  Model: &nbs Read more

  Sheet Metal Designs:       Surface Models:           Read more

                                              Read more

TAKEN INPUTS: Diameter = 0.04 m Length = 0.1 m Density of Air = 1.225 kg/m3 Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius Reynold No. = 20, 40, 100 We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity By applying above inp Read more

  Total  Number of Iterations  taken  for  Simulation  =  500   CUT  PLOTs  Obtained  for  Velocity: (A)  Outlet  Velocity =  10 m/sec:     (B)  Outlet  Read more

  Grid  Dependency  Test:  The Test is done at Valve Lift  =  0.001 m for three different Mesh SetUp.   Mesh SetUp:           (1)  Number of cells in X Axis  =  16     &nb Read more

  Problem  SetUp: Velocity  =  0.05  m/sec Start  Time  =  0  sec End  Time  =  1  sec delta  Time  for  0.2  Graded  Mesh  =  0.00001  sec delta  Time& Read more

  RESULTS Obtained:   (A) Angle of Attack = 0 Degree:     (B) Angle of Attack = 2 Degree:     (C) Angle of Attack = 4 Degree:     (D) Angle of Attack = 6 Degree:     (E) Angle of Attack = 8 Degree: Read more

Governing Equations for Non-Conservative form: (A) Continuity Equation: `(delrho)/(delt) = -rho(delV)/(delx)-rhoV((del(lnA))/(delx)) - V((delrho)/(delx))` (B) Momentum Equation: `(delV)/(delt) = -V(delV)/(delx) - 1/gamma((delT)/(delx) + T/rho(delrho)/(delx))` (C) E Read more


The End