Design and Analysis of a Centrifugal Pump in SolidWorks

 

Total  Number of Iterations  taken  for  Simulation  =  500

 

CUT  PLOTs  Obtained  for  Velocity:

(A)  Outlet  Velocity =  10 m/sec:

10

 

 

(B)  Outlet  Velocity =  20 m/sec:

20

 

 

(C)  Outlet  Velocity =  30 m/sec:

30

 

 

 

MASS  FLOW  RATE:

sc

 

 

PLOT  of  Mass  Flow  Rate  vs  Pressure  Ratio:

pp

 

 

ANIMATION  of  Flow  Trajectories:                     click here

 

 

 

RESULT  Discussion:

 

From the above plot, it is observed that Mass Flow Rate increases with decreased Pressure Ratio. In the boundary condition,the Outlet Velocity is increased from 10 m/sec to 30 m/sec for the parametric analysis of the Pump. Thus Pressure Loss also increases due to more friction. So, Pressure Head and Pressure Ratio decrease with increased Velocity.

NB:  In addition, if Recirculation Loss occurs due to difference in Blade Angle and Flow Angle; then the Performance Curve may look different from the above one. In that case, Pressure Ratio slightly  increases and then comes down with increased Velocity and Mass Flow Rate.Again for the Other Losses, the Curve Nature may change.

So, the Nature of Performance Curve depends on the Pump Parameters.

 

 

 


Projects by Jishnu Handique

  Assembled  Machine  Vice:       Drafting: (1)  Clamping  Plate:     (2)  Handle  Cap:     (3)  Handle:     (4)  Jaw:     (5)  Lock Read more

  (1)  Pipe  Vice:   (2)  Knuckle  Joint:   (3)  Screw  Jack:   (4)  Toy  Train  Model:   (5)  Socket  Spigot  Joint:   (6)  AirCraft  Model: &nbs Read more

  Sheet Metal Designs:       Surface Models:           Read more

                                              Read more

  (a) Symmetrically Simulated for Wedge Angle = 10 Degree, 25 Degree and 45 Degree (b) Axi-Symmetrically Simulated for Wedge Angle = 4 Degree   SCREENSHOT  of  the  25  Degree  Wedged  Pipe'  Inlet  in  ParaVi Read more

  Formulae involved: a) Entry Length of a Pipe for Laminar Flow, L = 0.07*Re*D b) Velocity = (Re*mu)/(rho*Diameter) c) Hagen-Poiseuille\'s Pressure Drop, dP = -(32*mu*u_avg*L)/(D*D) Here, u_avg = u_max/2 d) Hagen-Poiseuille\'s Velocity Distribution Read more

  import matplotlib.pyplot as plt import numpy as np # Functions def f(p): return pow(p,3)*(1-pow(beta,2))+(0.4*h*pow(beta,2)-sigma*pow(h,2)/pow(r,2))*pow(p,2)+(pow(sigma,2)*pow(h,4)/(3*pow(r,4)))*p-pow((sigma/3)*(pow(h,2)/pow(r,2)),3) def fprime(p) Read more

TAKEN INPUTS: Diameter = 0.04 m Length = 0.1 m Density of Air = 1.225 kg/m3 Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius Reynold No. = 20, 40, 100 We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity By applying above inp Read more

TAKEN INPUTS: Diameter = 0.04 m Length = 0.1 m Density of Air = 1.225 kg/m3 Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius Reynold No. = 20, 40, 100 We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity By applying above inp Read more


Loading...

The End