Finding minimum Cushion Pressure needed to break an Ice for it's different Thickness by Newton-Raphson Method in Python

 

import matplotlib.pyplot as plt
import numpy as np

# Functions

def f(p):
    return pow(p,3)*(1-pow(beta,2))+(0.4*h*pow(beta,2)-sigma*pow(h,2)/pow(r,2))*pow(p,2)+(pow(sigma,2)*pow(h,4)/(3*pow(r,4)))*p-pow((sigma/3)*(pow(h,2)/pow(r,2)),3)

def fprime(p):
	return (1-pow(beta,2))*3*pow(p,2)+(0.4*h*pow(beta,2)-sigma*pow(h,2)/pow(r,2))*2*p+pow(sigma,2)*pow(h,4)/(3*pow(r,4))

# Given Inputs

beta = 0.5
r = 40*12                                          # inch
sigma = 150                                        # psi
 
thickness_ft = np.linspace(0.6,4.2,7)              # feet
thickness_in = thickness_ft*12                     # inch

# Initialization

p = []
Iterations = []

p_guess = 90                                       # psi
alpha = 0.5
tol = 1e-6
iter = 1

# Newton-Raphson with Loop Operation

for h in thickness_in:
	
	while (abs(f(p_guess)) > tol):

		p_guess = p_guess-alpha*(f(p_guess))/(fprime(p_guess))

		iter = iter+1
		
	p.append(p_guess)

# Table Construction	

print ('%29s%44s' % ('Thickness of Ice (feet)','Minimum Cushion Pressure (psi)'))

for k in range(0,len(p)):
	print ('%19.1f%45.10f' % (thickness_ft[k],p[k]))

# Plotting the Graph

plt.plot(thickness_ft,p,'r')
plt.title( 'Minimum Cushion Pressure variation A/C to Thickness of Ice')
plt.xlabel('Thickness of Ice (feet)')
plt.ylabel('Minimum Cushion Pressure (psi)')
plt.xlim([0.5,4.5])
plt.ylim([0,0.14])
plt.grid()
plt.savefig('hp')
plt.show()

 

 

Table  Obtained:

t

 

 

Graph  Obtained:hp

 

Conclusion:

Minimum Cushion Pressure needed to break an Ice always increases with increasing Ice Thickness.

 

 

 

 


Projects by Jishnu Handique

  Assembled  Machine  Vice:       Drafting: (1)  Clamping  Plate:     (2)  Handle  Cap:     (3)  Handle:     (4)  Jaw:     (5)  Lock Read more

  (1)  Pipe  Vice:   (2)  Knuckle  Joint:   (3)  Screw  Jack:   (4)  Toy  Train  Model:   (5)  Socket  Spigot  Joint:   (6)  AirCraft  Model: &nbs Read more

  Sheet Metal Designs:       Surface Models:           Read more

                                              Read more

  (a) Symmetrically Simulated for Wedge Angle = 10 Degree, 25 Degree and 45 Degree (b) Axi-Symmetrically Simulated for Wedge Angle = 4 Degree   SCREENSHOT  of  the  25  Degree  Wedged  Pipe'  Inlet  in  ParaVi Read more

  Formulae involved: a) Entry Length of a Pipe for Laminar Flow, L = 0.07*Re*D b) Velocity = (Re*mu)/(rho*Diameter) c) Hagen-Poiseuille\'s Pressure Drop, dP = -(32*mu*u_avg*L)/(D*D) Here, u_avg = u_max/2 d) Hagen-Poiseuille\'s Velocity Distribution Read more

TAKEN INPUTS: Diameter = 0.04 m Length = 0.1 m Density of Air = 1.225 kg/m3 Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius Reynold No. = 20, 40, 100 We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity By applying above inp Read more

TAKEN INPUTS: Diameter = 0.04 m Length = 0.1 m Density of Air = 1.225 kg/m3 Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius Reynold No. = 20, 40, 100 We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity By applying above inp Read more

  Total  Number of Iterations  taken  for  Simulation  =  500   CUT  PLOTs  Obtained  for  Velocity: (A)  Outlet  Velocity =  10 m/sec:     (B)  Outlet  Read more


Loading...

The End