Simulation of 1D Supersonic Nozzle Flow using MacCormack Method in MATLAB

Governing Equations for Non-Conservative form:

(A) Continuity Equation:

`(delrho)/(delt) = -rho(delV)/(delx)-rhoV((del(lnA))/(delx)) - V((delrho)/(delx))`

(B) Momentum Equation:

`(delV)/(delt) = -V(delV)/(delx) - 1/gamma((delT)/(delx) + T/rho(delrho)/(delx))`

(C) Energy Equation:

`(delT)/(delt) = -V(delT)/(delx) - (gamma-1)T[(delV)/(delx) + V(del(lnA))/(delx)]`

 

Governing Equations for Conservative form:

`(delU_1)/(delt) = - (delF_1)/(delx)`

`(delU_2)/(delt) = - (delF_2)/(delx) + J_2`

`(delU_3)/(delt) = - (delF_3)/(delx)`

Here,

`U_1 = rhoA, U_2 = rhoAV, U_3 = rhoA(e/(gamma-1)+gamma/2V^2)`

`F_1 = rhoAV,F_2 = rhoAV^2 + 1/gammapA, F_3 = rho(e/(gamma-1)+gamma/2V^2 )VA+ pAV`

`J_2 = 1/gamma*p*(delA)/(delx)`

Again,

`V=(U_2)/(U_1), e=T and p=rhoT`

 

Simulation is computed at     1) Grid Points = 31, 61 and 91

                                          2) Various CFL Number

                                          3) Error Tolerance = 1e-05

 

PLOTS shown for Conservative form at CFL = 0.5 and Grid Points = 31:

 

a

 

 

v

 

 

c

 

 

d

 

 

e

 

 

f

 

 

 

PLOTS shown for Non-Conservative form at CFL = 0.5 and Grid Points = 31:

 

h

 

 

i

 

 

j

 

 

k

 

 

l

 

 

m

 

 

 

 

RESULT Discussion:

 

The minimum Number of Cycles and Time required for the convergence of simulation ( at CFL = 0.5 ):

sc

 

Convergence Rate:

We noticed that if   `CFL <1`, the Non-Conservative form converges at faster rate than the Conservative form for the same Number of Grid Points. But for   `CFL =1`,  the Conservative form is faster compared to the other one.

Here CFL No. is incresaed for the same No. of Grid Points to converge the simulation fast.

 

Mass Flow Rate Variation:

Conservative form -->  In this case the Mass Flow Rate remains fairly constant before and after the throat (x = 1.5). The plot will be smoother if we increase the No. of Grid Points.

For CFL = 0.8 and Grid Points = 31,

3

 

For CFL = 0.8 and Grid Points = 91,

4

 

Non-Conservative form -->  For a fixed CFL No. increasing the Grid Points to 61 and 91 decreases the deviation of Mass Flow Rate before and after the throat (x = 1.5).

For CFL = 0.8 and Grid Points = 31,

1

 

For CFL = 0.8 and Grid Points = 91,

2

 

##  Again between these Conservative and Non-conservative Mass Flow Rate, deviation in the first one is less compared to the second one. Hence the Conservative form is better for Mass Flow Rate  ##

At last we can conclude that to minimize the deviation or error, finer grid should be used.

 

NB:  In the book, John D Anderson; dt = 0.0267 is taken for the Conservative simulation.That 
     value is a TYPO. Because of that value, 'Simulation Time' and 'No. of Time Steps' may 
     get differ from the present results stated above when comparing with the Non- 
     Conservative form.

 

 

 

 


Projects by Jishnu Handique

  Assembled  Machine  Vice:       Drafting: (1)  Clamping  Plate:     (2)  Handle  Cap:     (3)  Handle:     (4)  Jaw:     (5)  Lock Read more

  (1)  Pipe  Vice:   (2)  Knuckle  Joint:   (3)  Screw  Jack:   (4)  Toy  Train  Model:   (5)  Socket  Spigot  Joint:   (6)  AirCraft  Model: &nbs Read more

  Sheet Metal Designs:       Surface Models:           Read more

                                              Read more

TAKEN INPUTS: Diameter = 0.04 m Length = 0.1 m Density of Air = 1.225 kg/m3 Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius Reynold No. = 20, 40, 100 We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity By applying above inp Read more

  Total  Number of Iterations  taken  for  Simulation  =  500   CUT  PLOTs  Obtained  for  Velocity: (A)  Outlet  Velocity =  10 m/sec:     (B)  Outlet  Read more

  Grid  Dependency  Test:  The Test is done at Valve Lift  =  0.001 m for three different Mesh SetUp.   Mesh SetUp:           (1)  Number of cells in X Axis  =  16     &nb Read more

  Problem  SetUp: Velocity  =  0.05  m/sec Start  Time  =  0  sec End  Time  =  1  sec delta  Time  for  0.2  Graded  Mesh  =  0.00001  sec delta  Time& Read more

  RESULTS Obtained:   (A) Angle of Attack = 0 Degree:     (B) Angle of Attack = 2 Degree:     (C) Angle of Attack = 4 Degree:     (D) Angle of Attack = 6 Degree:     (E) Angle of Attack = 8 Degree: Read more


Loading...

The End