OpenFoam Simulation of Flow through a Backward Facing Step

 

Problem  SetUp:

q

Velocity  =  0.05  m/sec

Start  Time  =  0  sec

End  Time  =  1  sec

delta  Time  for  0.2  Graded  Mesh  =  0.00001  sec

delta  Time  for  0.5  Graded  Mesh  =  0.0001  sec

delta  Time  for  0.8  Graded  Mesh  =  0.0001  sec

Number of Cells in X direction  (Longer  Dimension =  200

Number of Cells in Y direction  (Each  Block =  10

OpenFoam  Solver  =  icoFoam

 

 

CONTOURS  Obtained:

 

(A)  0.2  Graded  Mesh:

11

 

Velocity  Distribution  without  Mesh:

fff

 

Velocity  Distribution  with  Mesh:

1

 

 

 

(B)  0.5  Graded  Mesh:

hh

 

Velocity  Distribution   without  Mesh:

kk

 

Velocity  Distribution  with  Mesh:

22

 

 

 

(C)  0.8  Graded  Mesh:

uyy

 

Velocity  Distribution  without  Mesh:

ffd

 

Velocity  Distribution   with  Mesh:

cc

 

 

 

PLOT  of  Velocity  Variation  @  0.085  m  from  Inlet  (for  different  Graded  Mesh):

s

 

 

CFL  Number:

Mean  Courant  Number  for  0.2  Graded  Mesh:  0.000325646

Mean  Courant  Number  for  0.5  Graded  Mesh:  0.00326564

Mean  Courant  Number  for  0.8  Graded  Mesh:  0.00327031

 

 

CONCLUSION:

NB:   `CFL=(Velocitytimes dt)/(trianglex)`

   The CFL numbers for Convergence are different for all the three Graded Mesh Simulations. For 0.2 Graded Mesh, simulation converges at delta time  =  0.00001 sec. But for 0.5 and 0.8 Graded Meshes, convergence delta time is 0.0001 sec. 

OBSERVATION:

   0.2 Graded Mesh < 0.5 Graded Mesh < 0.8 Graded Mesh

=> (delta time of 0.2 Graded Mesh) < (delta time of 0.5 Graded Mesh)=(delta time of 0.8 Graded Mesh)

=> 0.2 Graded CFL Number < 0.5 Graded CFL Number < 0.8 Graded CFL Number

=> 0.2 Graded Convergence Time > 0.5 Graded Convergence Time > 0.8 Graded Convergence Time

  So, 0.8 Graded Mesh Simulation converges at the fastest rate among all the three Graded Mesh Simulations.

  Again from the above Plot, we can conclude --> Velocity Distributions are almost same for all the Graded Mesh.

 

 


Projects by Jishnu Handique

  Assembled  Machine  Vice:       Drafting: (1)  Clamping  Plate:     (2)  Handle  Cap:     (3)  Handle:     (4)  Jaw:     (5)  Lock Read more

  (1)  Pipe  Vice:   (2)  Knuckle  Joint:   (3)  Screw  Jack:   (4)  Toy  Train  Model:   (5)  Socket  Spigot  Joint:   (6)  AirCraft  Model: &nbs Read more

  Sheet Metal Designs:       Surface Models:           Read more

                                              Read more

  (a) Symmetrically Simulated for Wedge Angle = 10 Degree, 25 Degree and 45 Degree (b) Axi-Symmetrically Simulated for Wedge Angle = 4 Degree   SCREENSHOT  of  the  25  Degree  Wedged  Pipe'  Inlet  in  ParaVi Read more

  Formulae involved: a) Entry Length of a Pipe for Laminar Flow, L = 0.07*Re*D b) Velocity = (Re*mu)/(rho*Diameter) c) Hagen-Poiseuille\'s Pressure Drop, dP = -(32*mu*u_avg*L)/(D*D) Here, u_avg = u_max/2 d) Hagen-Poiseuille\'s Velocity Distribution Read more

  import matplotlib.pyplot as plt import numpy as np # Functions def f(p): return pow(p,3)*(1-pow(beta,2))+(0.4*h*pow(beta,2)-sigma*pow(h,2)/pow(r,2))*pow(p,2)+(pow(sigma,2)*pow(h,4)/(3*pow(r,4)))*p-pow((sigma/3)*(pow(h,2)/pow(r,2)),3) def fprime(p) Read more

TAKEN INPUTS: Diameter = 0.04 m Length = 0.1 m Density of Air = 1.225 kg/m3 Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius Reynold No. = 20, 40, 100 We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity By applying above inp Read more

TAKEN INPUTS: Diameter = 0.04 m Length = 0.1 m Density of Air = 1.225 kg/m3 Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius Reynold No. = 20, 40, 100 We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity By applying above inp Read more

  Total  Number of Iterations  taken  for  Simulation  =  500   CUT  PLOTs  Obtained  for  Velocity: (A)  Outlet  Velocity =  10 m/sec:     (B)  Outlet  Read more


Loading...

The End