OpenFoam Simulation of Flow through a Pipe using Symmetric and Axi-symmetric Boundary Conditions and Comparison of their Results

 

(a) Symmetrically Simulated for Wedge Angle = 10 Degree, 25 Degree and 45 Degree

(b) Axi-Symmetrically Simulated for Wedge Angle = 4 Degree

 

SCREENSHOT  of  the  25  Degree  Wedged  Pipe'  Inlet  in  ParaView:

wp

 

Plots  Obtained:

Comparison  of  Velocity  Profiles  at  the  Starting  of  the  Pipe  for  different  Wedge  Angle:

a

 

 

Comparison  of  Velocity  Profiles  at  the  End  of  the  Pipe  for  different  Wedge  Angle:

b

 

 

Shear  Stress  Profile  obtained:

c

 

 

Comparison  of  Kinematc  Pressure  Variation  along  the  Pipe  Length  for  different  Wedge  Angle:

c

 

 

Result  Discussion:

From the above Plots we can see that the velocity profiles are fully developed for all the angle at the exit of the pipe as they closely matched the Hagen-Poiseuille's velocity profile.

Other  Observations  are:

(1)  Pressure Drop (dP) acccording to Hagen-Poiseuille = 64.2417664 Pa

 

(2)

1

 

(3)

2

 

(4)

3

 

(5)

4

 

(6)  Maximum Shear Stress obtained after the Simulation = 0.00437 Pa

 

Conclusion:

No any significant difference between the Symmetric BC Results and Axi-symmetric BC Results is noticed. But according to the Wedge Angle; Velocity and Kinematic Pressure change negligibly. Average and Maximum Velocity increase if the Wedge Angle is increased.Likewise Kinematic Pressure Drop also increases with increasing Angle.

 

 


Projects by Jishnu Handique

  Assembled  Machine  Vice:       Drafting: (1)  Clamping  Plate:     (2)  Handle  Cap:     (3)  Handle:     (4)  Jaw:     (5)  Lock Read more

  (1)  Pipe  Vice:   (2)  Knuckle  Joint:   (3)  Screw  Jack:   (4)  Toy  Train  Model:   (5)  Socket  Spigot  Joint:   (6)  AirCraft  Model: &nbs Read more

  Sheet Metal Designs:       Surface Models:           Read more

                                              Read more

  Formulae involved: a) Entry Length of a Pipe for Laminar Flow, L = 0.07*Re*D b) Velocity = (Re*mu)/(rho*Diameter) c) Hagen-Poiseuille\'s Pressure Drop, dP = -(32*mu*u_avg*L)/(D*D) Here, u_avg = u_max/2 d) Hagen-Poiseuille\'s Velocity Distribution Read more

  import matplotlib.pyplot as plt import numpy as np # Functions def f(p): return pow(p,3)*(1-pow(beta,2))+(0.4*h*pow(beta,2)-sigma*pow(h,2)/pow(r,2))*pow(p,2)+(pow(sigma,2)*pow(h,4)/(3*pow(r,4)))*p-pow((sigma/3)*(pow(h,2)/pow(r,2)),3) def fprime(p) Read more

TAKEN INPUTS: Diameter = 0.04 m Length = 0.1 m Density of Air = 1.225 kg/m3 Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius Reynold No. = 20, 40, 100 We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity By applying above inp Read more

TAKEN INPUTS: Diameter = 0.04 m Length = 0.1 m Density of Air = 1.225 kg/m3 Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius Reynold No. = 20, 40, 100 We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity By applying above inp Read more

  Total  Number of Iterations  taken  for  Simulation  =  500   CUT  PLOTs  Obtained  for  Velocity: (A)  Outlet  Velocity =  10 m/sec:     (B)  Outlet  Read more


Loading...

The End