Simulation of Flow past a Cylinder for various Reynold's Number in SolidWorks

TAKEN INPUTS:

Diameter = 0.04 m
Length = 0.1 m
Density of Air = 1.225 kg/m3
Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius
Reynold No. = 20, 40, 100

We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity

By applying above inputs in the Formula, we obtained:

Velocity for (Re = 20)  is  0.007592 m/sec
Velocity for (Re = 40)  is  0.015184 m/sec
Velocity for (Re = 100) is  0.037959 m/sec

Since, Flow through Time = Length/Velocity

Flow through Time for (Re = 20)  is  13.172 sec
Flow through Time for (Re = 40)  is  06.586 sec
Flow through Time for (Re = 100) is  02.634 sec

And, Simulation Time = 2 x Flow through Time

Simulation Time for (Re = 20)  is approx  27 sec
Simulation Time for (Re = 40)  is approx  14 sec
Simulation Time for (Re = 100) is approx  06 sec

 

 

VELOCITY  Contours  Obtained  (Front  View):

 

(A)  Re = 20

20

 

Link  to  the  ANIMATION:                              click here

  

 

(B)  Re = 40

40

 

Link  to  the  ANIMATION:                              click here

 

 

(C)  Re = 100

100

 

Link  to  the  ANIMATION:                              click here

 

 

RELATIVE  PRESSURE  Contours  Obtained  (Top  View):

 

(A)  Re = 20

2

 

Link  to  the  ANIMATION:                              click here

 

 

(B)  Re = 40

4

 

Link  to  the  ANIMATION:                              click here

 

 

(C)  Re = 100

10

 

Link  to  the  ANIMATION:                              click here

 

 

RESULT  DISCUSSION:

 

 

 

 


Projects by Jishnu Handique

  Assembled  Machine  Vice:       Drafting: (1)  Clamping  Plate:     (2)  Handle  Cap:     (3)  Handle:     (4)  Jaw:     (5)  Lock Read more

  (1)  Pipe  Vice:   (2)  Knuckle  Joint:   (3)  Screw  Jack:   (4)  Toy  Train  Model:   (5)  Socket  Spigot  Joint:   (6)  AirCraft  Model: &nbs Read more

  Sheet Metal Designs:       Surface Models:           Read more

                                              Read more

  (a) Symmetrically Simulated for Wedge Angle = 10 Degree, 25 Degree and 45 Degree (b) Axi-Symmetrically Simulated for Wedge Angle = 4 Degree   SCREENSHOT  of  the  25  Degree  Wedged  Pipe'  Inlet  in  ParaVi Read more

  Formulae involved: a) Entry Length of a Pipe for Laminar Flow, L = 0.07*Re*D b) Velocity = (Re*mu)/(rho*Diameter) c) Hagen-Poiseuille\'s Pressure Drop, dP = -(32*mu*u_avg*L)/(D*D) Here, u_avg = u_max/2 d) Hagen-Poiseuille\'s Velocity Distribution Read more

  import matplotlib.pyplot as plt import numpy as np # Functions def f(p): return pow(p,3)*(1-pow(beta,2))+(0.4*h*pow(beta,2)-sigma*pow(h,2)/pow(r,2))*pow(p,2)+(pow(sigma,2)*pow(h,4)/(3*pow(r,4)))*p-pow((sigma/3)*(pow(h,2)/pow(r,2)),3) def fprime(p) Read more

TAKEN INPUTS: Diameter = 0.04 m Length = 0.1 m Density of Air = 1.225 kg/m3 Dynamic Viscosity = 18.6e-6 Pa.sec at 20 Degree Celsius Reynold No. = 20, 40, 100 We know that, Reynold No. = (Density x Velocity x Diameter)/Dynamic Viscosity By applying above inp Read more

  Total  Number of Iterations  taken  for  Simulation  =  500   CUT  PLOTs  Obtained  for  Velocity: (A)  Outlet  Velocity =  10 m/sec:     (B)  Outlet  Read more


Loading...

The End